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Abstract
We discuss the electromagnetic properties of both a charged free particle, and
a charged particle bounded by an harmonic potential, within collapse models.
By choosing a particularly simple—yet physically relevant—collapse model,
and under only the dipole approximation, we are able to solve the equation of
motion exactly. In this way, both the finite-time and large-time behavior can
be analyzed accurately. We discovered new features, which did not appear in
previous works on the same subject. Since, so far, the spontaneous photon
emission process places the strongest upper bounds on the collapse parameters,
our results call for a further analysis of this process for those atomic systems
which can be employed in experimental tests of collapse models, as well as of
quantum mechanics.

PACS numbers: 03.65.Ta, 42.50.Lc, 42.50.Ct

1. Introduction

Models of spontaneous wavefunction collapse [1–5] provide a description of quantum (and
classical) phenomena, which is free of the much debated measurement problem affecting the
standard quantum theory. This is achieved by modifying the Schrödinger equation, adding
nonlinear and stochastic terms which reproduce, at a suitable scale, the process of wavefunction
collapse.

By modifying the Schrödinger equation, these models make predictions which differ
from those of standard quantum mechanics. It is interesting and important to analyze such
differences, not only for a better understanding of these models, but also for deciding which
experimental setups are more convenient, in order to test them against quantum mechanics.
Such experiments, needless to say, would represent important tests also for the quantum theory
itself [6].
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It has emerged from the work reported in [7–11] that the electromagnetic properties
of matter place, so far, the strongest upper bound on the collapse frequency λGRW of the
GRW (Ghirardi–Rimini–Weber) model [1] (or, equivalently, the parameter γ of the CSL3

(continuous spontaneous localization) model [3]). More specifically, it has been proven that
charged particles spontaneously emit radiation, as a consequence of the interaction with the
collapsing field, also when according to standard quantum mechanics no radiation should be
emitted; the radiation spectrum has been computed both for a free charged particle [10] and
for an hydrogenic atom [11]. The theoretical spectrum has been compared with available
experimental data, placing an upper bound [11] of only six orders of magnitude away from
the standard CSL value4 γ = 10−30 cm3s−1. Note that more direct experiments of the
superposition principle of quantum mechanics, such as diffraction experiments with macro-
molecules [12, 13], place a much weaker upper bound, which is 13 orders of magnitude away
from the standard CSL value [14]. These figures show that analyzing the electromagnetic
properties of matter within collapse models is particularly relevant, not only per se but also in
view of future experimental tests.

The above-mentioned analysis has been carried out to first order in perturbation theory,
using the CSL model. The goal of this work is to deepen our understanding of the process of
spontaneous photon emission from charged particles. We will do it by using, in place of the
CSL model, the simpler QMUPL (quantum mechanics with universal position localizations)
model [15, 16] and we will work under the dipole approximation. These assumptions will
allow us to solve the equations of motion exactly: we will derive an exact formula for the
spectrum of the emitted radiation, valid to all orders, and we will compare it with the formulas
obtained in [10, 11]. As we will see, new features will emerge, previously not discussed.

The QMUPL model of spontaneous wavefunction collapse applies to systems of
distinguishable non-relativistic particles. The one-particle equation, which is sufficient for the
purposes of this paper, reads

dψt =
[
− i

h̄
H dt +

√
λ(q − 〈q〉t ) dWt − λ

2
(q − 〈q〉t )2dt

]
ψt, (1)

its generalization to a many-particle system being straightforward. In the above equation, H
is the standard quantum Hamiltonian of the particle, q is its position operator, Wt are three
independent standard Wiener processes defined on a probability space (�,F, P) and λ is a
positive constant which sets the strength of the collapse mechanics. The physical content
of the above equation is the following. The first term on the right-hand side gives the usual
unitary evolution, driven by the Hamiltonian H. The second and third terms cause the collapse
of the wavefunction toward a state which is localized in space, being driven by the position
operator. More specifically (but not entirely correctly; for a discussion see [17]) the third term
localizes the wavefunction—the more negative it is, the greater the difference |q−〈q〉t |—while
the second term, which contains the random process Wt , ensures that the collapse occurs

3 The GRW and CSL models are the two most popular models of spontaneous wavefunction collapse. Their main
difference is that the first assumes the collapses to occur at discrete random times, through a jump process, while the
second assumes the collapse to occur continuously, through a diffusion process.
4 This value for the collapse parameter γ has been chosen in such a way that for a single constituent—in which case
the GRW and CSL models coincide at the statistical level—the reduction occurs with the rate λGRW � 2.2×10−17s−1

of the GRW model [1]. The relation between the two constants is λGRW = γ (α/4π)3/2, with α = 1010cm−2 [3].
This choice implies that the two models behave similarly, although important differences arise, due to the fact that
the GRW model refers only to systems of distinguishable particles, while the CLS model takes into account also
identical particles. The numerical value for λGRW was originally chosen in such a way to ensure that superpositions of
macroscopic objects (containing roughly an Avogadro’s number of constituents) are localized within the perception
time of a human being, while microscopic systems retain all their quantum properties [1].
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randomly and in agreement with the Born probability rule. The structure (q − 〈q〉t ) ensures
that the wavefunction remains normalized, even if the dynamics is not unitary anymore.

This model, in spite of its simplicity, is particularly relevant because, in an appropriate limit
which we shall now briefly discuss, it reduces at the statistical level to the more familiar GRW
model (thus also to the CSL model, as long as the particles are distinguishable). Here again we
limit our consideration to one single particle. The master equation describing the time evolution
of the statistical ensemble ρt ≡ EP[|ψt 〉〈ψt |], where ψt evolves according to equation (1), has
a Lindblad form, which in the position representation (where ρt (x, y) ≡ 〈x|ρt |y〉) reads [16]

d

dt
ρt (x, y) = − i

h̄
[H, ρt (x, y)] − λ

2
(x − y)2 ρt (x, y). (2)

On the other hand, the one-particle GRW (and CSL) master equation reads [1]

d

dt
ρt (x, y) = − i

h̄
[H, ρt (x, y)] − λGRW

[
1 − e− α

4 (x−y)2]
ρt (x, y), (3)

for the relation between the constant λGRW characterizing the GRW model and the constant
γ defining the strength of the collapse process in the CSL model, see the previous footnote.
The second parameter (α) defines a correlation length rC = 1/

√
α � 10−5 cm, above which

spatial superpositions are reduced.
Let us now consider situations where, for all values of x and y such that the density matrix

ρt (x, y) is appreciably different from 0, one has |x − y| � rC . We call this the small distances
assumption. This is the case if the physical system is localized well below rC, as happens e.g.
for atoms in matter. In this case, it makes sense to take, in equation (3), the limit α → 0 and
λGRW → ∞, while keeping the product λGRWα constant. Then, equation (3) reduces to (2),
with the identification

λ = αλGRW

2
= α3/2γ

16π3/2
. (4)

Accordingly, the QMUPL model represents, at the statistical level, a good approximation of
the GRW models, for those systems which are well localized with respect to the correlation
length rC.

2. Motion of a charged particle interacting with the electromagnetic field, bounded
by a linear force, subject to collapse in space

In this section we explicitly solve, under only the dipole approximation, the equations of motion
for a non-relativistic charged particle interacting with the second quantized electromagnetic
field. The particle is bounded by an harmonic potential—the limit case of a free particle will
also be discussed—and is subject to spontaneous collapses in space according to the QMUPL
model.

Equation (1) is nonlinear, but it can be appropriately reduced to a linear (though not
norm-preserving) equation through a standard procedure [16]. Of course, non-linearity is
not canceled; it reappears when the statistical properties (through a change of measure) are
computed. However, since we are ultimately concerned only with physical quantities of the
type EP[〈ψt |O|ψt 〉], where O is any suitable self-adjoint operator, we can use the following
mathematical property. Consider the class of SDEs:

dψ
ζ
t =

[
− i

h̄
H dt +

√
λ(ζq − ζR〈q〉t ) dWt − 1

2
λ
(|ζ |2q2 − 2ζ ζRq〈q〉t + ζ 2

R〈q〉2
t

)
dt

]
ψ

ζ
t , (5)

where ζ is a complex phase, and ζR its real part. A straightforward application of Itô calculus
allows us to prove that EP[〈ψt |O|ψt 〉] is independent of ζ , in spite of the fact that equation (5)
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describes completely different evolutions for the wavefunction, for different values of ζ . In
particular, when ζ = 1, equation (5) coincides with the QMUPL collapse equation (1). On
the other hand, when ζ = i, equation (5) reduces to the simpler SDE:

dψt =
[
− i

h̄
H dt + i

√
λq dWt − 1

2
λq2 dt

]
ψt, (6)

where all the non-linear terms have disappeared. Such an equation of course does not lead to
the collapse of the wavefunction, since it describes a linear and unitary5, though stochastic,
evolution. Nevertheless, it is as good as equation (1) for computing average quantities. The
advantage is that its linearity and unitarity make calculations easier.

Equation (6) has to be understood in the Itô sense. We will solve the corresponding
Stratonovich equation, where the stochastic differential dWt can be interpreted as the increment
of a white noise w(t):

ih̄
d

dt
ψt = [H −

√
λh̄ q w(t)]ψt . (7)

This is a standard Schrödinger equation with a random potential depending on the position q
of the particle. Note that the last term of equation (6) has disappeared in going from the Itô
to the Stratonovich formulation of the SDE. Actually, one can be more general and assume
that w(t) represents three Gaussian noises with zero mean and a general correlation function,
without having to change the mathematical formalism. However, this goes beyond the scope
of the present analysis, so we will keep assuming that w(t) is white noise.

Coming back to our physical system, the standard Hamiltonian H is

H = 1

2m0
(p − eA)2 +

1

2
κ q2 +

1

2
ε0

∫
d3x [E2 + c2B2], (8)

where m0 is the bare mass of the particle, κ is the force constant of the harmonic term, A is
the vector potential, E and B are the electric and magnetic fields, respectively, e is the electric
charge, c is the speed of light and ε0 is the vacuum permittivity. Throughout this section, we
use the gauge ∇ · A = 0 and V = 0, where V is the electromagnetic scalar potential6.

The plane wave decomposition of the vector potential A reads

A(x) =
√

h̄

ε0

∑
μ

∫
d3k√
(2π)3

1√
2ωk

εkμ

[
akμ eik·x + a

†
kμ e−ik·x], (9)

where ωk = ck (k = |k|) is the frequency corresponding to the wave vector k, εkμ (μ = 1, 2)
are the linear polarization vectors and a

†
kμ, akμ are the creation and annihilation operators,

respectively, satisfying the standard commutation relations:[
akμ, a

†
k′μ′

] = δμμ′δ
(3)(k − k′). (10)

Up to now the model is exact, but not exactly solvable. To further proceed in the analysis,
we make the dipole approximation eik·x � 1, which holds as long as the wavelength of
the electromagnetic radiation is much larger than the typical size of an atom. Note that
this assumption is compatible with the small distances assumption discussed in the previous
section. The resulting model turns out to be ultraviolet divergent: we cure this problem

5 The third term of equation (6) is an ‘Itô term’, which disappears from the solution of the equation. For this reason
the evolution is unitary, even if apparently it does not look so.
6 Note that we are assuming that the spontaneous collapse process occurs only for the particle, not for the
electromagnetic field. The reason is that, so far, collapse models have been considered only for massive particles,
the localization of their wavefunction being sufficient for solving the measurement problem of quantum mechanics.
However, in a more speculative scenario, e.g. where the collapse mechanism is linked to gravitational phenomena,
one could assume that also the photons’ wavefunction undergoes a spontaneous localization process.
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by introducing a form factor g(k), corresponding to the Fourier transform of the charge
distribution (normalized to unity):

g(k) :=
∫

d3k√
(2π)3

ρ(r) e−ik·r,
∫

d3r ρ(r) = 1. (11)

Under these approximations, the vector potential (9) becomes

A(x) =
√

h̄

ε0

∑
μ

∫
d3k

g(k)√
2ωk

εkμ

[
akμ + a

†
kμ

]
, (12)

and the factor (2π)−3/2 has been included in the definition of g(k). In this way, in the
point-particle limit, g(k) → 1/

√
(2π)3.

Since the total Hamiltonian in equation (7) is a standard—though stochastic—
Hamiltonian, one can conveniently work in the Heisenberg picture. The equations of motions
for the position q(t) of the particle and of the conjugate momentum p(t) can be immediately
derived:

dp
dt

= −κ q +
√

λh̄w(t), (13)

dq
dt

= p
m0

− e

m0
A, (14)

while the equation of motion for the electromagnetic field operator a
†
kμ(t) is

da
†
kμ

dt
= iωka

†
kμ − ie√

h̄ε0m0

g(k)√
2ωk

εkμ · p

+
ie2

ε0m0

g(k)√
2ωk

εkμ.
∑
μ′

∫
d3k′ g(k′)√

2ωk′
εk′μ′

[
ak′μ′ + a

†
k′μ′

]
(15)

the equation for akμ(t) can be obtained from the previous one by taking the Hermitian
conjugate. The above set of coupled linear differential equations can be conveniently solved
with the help of the Laplace transform; the equations for the transformed variables (which are
denoted by a tilde) read

zp̃(z) − p(0) = −κq̃(z) + h̄
√

λw̃(z), (16)

zq̃(z) − q(0) = p̃(z)

m0
− e

m0

√
h̄

ε0

∑
μ

∫
d3k

1√
2ωk

g(k) εkμ

[
ã
†
kμ(z) + ãkμ(z)

]
, (17)

zã
†
kμ(z) − a

†
kμ(0) = iωk ã

†
kμ(z) − ie√

h̄ε0

1√
2ωk

g(k) εkμ · [zq̃(z) − q(0)], (18)

zãkμ(z) − akμ(0) = −iωk ãkμ(z) +
ie√
h̄ε0

1√
2ωk

g(k) εkμ · [zq̃(z) − q(0)], (19)

where z is the transformed time. The above set now represents a system of coupled algebraic
equations, which can be solved in a standard way. The calculation is long but straightforward;
transforming back to the original variables, one obtains

q(t) = [1 − κ F1(t)] q(0) + F0(t) p(0)

− e

√
h̄

ε0

∑
μ

∫
d3k

g(k)√
2ωk

εkμ

[
G+

1(k, t) akμ(0) + G−
1 (k, t) a

†
kμ(0)

]

+
√

λh̄

∫ t

0
dsF0(t − s)w(s), (20)
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p(t) = −κ [t − κ F2(t)] q(0) + [1 − κ F1(t)] p(0)

+ κ e

√
h̄

ε0

∑
μ

∫
d3k

g(k)√
2ωk

εkμ

[
G+

0(k, t) akμ(0) + G−
0 (k, t) a

†
kμ(0)

]

+
√

λh̄

∫ t

0
ds [1 − κ F1(t − s)] w(s), (21)

a
†
kμ(t) = eiωkta

†
kμ(0) − ie√

h̄ε0

g(k)√
2ωk

εkμ · [
G−

1 (k, t) p(0) − κ G−
0 (k, t) q(0)

]
+

ie2

ε0

g(k)√
2ωk

εkμ ·
∑
μ′

∫
d3k′ g(k′)√

2ωk′
εk′μ′

[
G−

+ (k, k′, t) ak′μ′(0)

+ G−
−(k, k′, t) a

†
k′μ′(0)

] − ie

√
h̄λ

ε0

g(k)√
2ωk

εkμ ·
∫ t

0
ds G−

1 (k, t − s)w(s), (22)

akμ(t) = e−iωktakμ(0) +
ie√
h̄ε0

g(k)√
2ωk

εkμ · [
G+

1(k, t) p(0) − κ G+
0(k, t) q(0)

]
− ie2

ε0

g(k)√
2ωk

εkμ ·
∑
μ′

∫
d3k′ g(k′)√

2ωk′
εk′μ′

[
G+

+(k, k′, t) ak′μ′(0)

+ G+
−(k, k′, t) a

†
k′μ′(0)

]
+ ie

√
h̄λ

ε0

g(k)√
2ωk

εkμ ·
∫ t

0
ds G+

1(k, t − s)w(s). (23)

In the previous formulas, we have introduced the following functions:

Fn(t) =
∫

�

dz

2π i

ezt

znH(z)
, n = 0, 1, 2, (24)

G±
n (k, t) =

∫
�

dz

2π i

zn ezt

(z ± iωk)H(z)
, n = 0, 1, (25)

G±
±(k, k′t) =

∫
�

dz

2π i

z2 ezt

(z ± iωk)(z ± iωk′)H(z)
; (26)

in the third expression, the upper ± refers to the first parenthesis, while the lower one refers
to the second parenthesis. In all the above formulas, according to the theory of Laplace
transform, the contour � must be a line parallel to the imaginary axis, lying to the right of all
singularities of the integrand. The above solutions should be compared with those obtained
in [18, 19], where the collapse process was not taken into account: apart from a marginal
calculational mistake in [19] in the evolution of p(t), the two results agree when λ is set to
zero in equations (20)–(23).

The function H(z) is defined as follows:

H(z) = κ + z2

[
m0 +

8πe2

3ε0

∫ ∞

0
dk g(k)2 k2

z2 + ω2
k

]
(27)

(from now on we assume the form factor to depend only on the modulus k of k). This is a
crucial quantity, as through formulas (24)–(26) it determines the time evolution of all physical
quantities. It depends on the form factor g(k): simply removing it, would make the integral

6
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ultraviolet divergent. To overcome the problem, we apply a renormalization procedure. The
quantity within square brackets in (27) can be rewritten as follows:

m0 +
8πe2

3ε0

∫ ∞

0
dk g(k)2 k2

z2 + ω2
k

=
(

m0 +
4

3
mr

)
− 8πe2

3ε0c2
z2

∫ ∞

0
dk

g(k)2

z2 + ω2
k

, (28)

where mr is the electrostatic mass:

mr := e2

8πε0c2

∫
d3rd3r ′ ρ(r)ρ(r′)

|r − r′| ≡ 2πe2

ε0c2

∫
d3k g(k)2. (29)

When g(k) → 1/
√

(2π)3, mr diverges. We apply the classical renormalization procedure7 for
a non-relativistic charged particle coupled to the electromagnetic field [20–22] (which is valid
both as a classical calculation and as a Heisenberg picture, quantum mechanical one, as in our
case). According to it, as mr → +∞ in the point-particle limit, one assumes that m0 → −∞,
in such a way that m := m0 + (4/3)mr remains finite. This is assumed to be the renormalized
mass.

The last term of (28) instead remains finite in the limit, the integral can be evaluated, and
H(z) takes the well-behaved expression:

H(z) = κ + z2 [m − β z] , β = e2

6πε0c3
� 5.71 × 10−54 kg s. (30)

Note that β is precisely the coefficient in front of the Abraham–Lorentz force, which is
responsible for the runaway behavior of the corresponding Abraham–Lorentz equation, as we
shall soon see. H(z) is a polynomial of third degree, whose zeros can be found by the standard
Cardan method. One solution is real and two are complex conjugate. Let ω0 := √

κ/m be the
frequency of the oscillator. By assuming ω0 � 2m/

√
27β � 6.14 × 1022 s−1 for an electron

(h̄ω0 � 4.04 × 104 keV), their approximate value is (see appendix A)

z1 � m

β
+ o(ω0), z2,3 � −ω2

0β

2m
± iω0 + o

(
ω3

0

)
. (31)

Given the above results, the functions Fn(t) and G±
n (k, t) defined in (24) and (25), which are

the only ones we will use in the subsequent analysis, become

Fn(t) =
3∑

�=1

z� ez�t

[
z − z�

H(z)

]
z=z�

+

⎧⎨
⎩

0 n = 0,

ω−2
0 n = 1,

tω−2
0 n = 2,

(32)

G±
n (k, t) =

3∑
�=1

zn
� ez�t

(z� ± ik)

[
z − z�

H(z)

]
z=z�

+
(±ik)n e±ikt

H(±ik)
. (33)

The term in (32) and (33) with � = 1 diverges exponentially, since z1 is positive. As we have
anticipated, this is a manifestation of the runaway behavior of the Abraham–Lorentz equation
[20–23]. In particular, in the free particle case (ω0 = 0), the coefficient z1 corresponds to the
rate of exponential growth of the acceleration, as discussed in textbooks. This problem is still
open, and we pragmatically dismiss it by ignoring, in the subsequent formulas, all terms with
� = 1.

7 One can note that the collapse terms do not enter the following equations; thus, the renormalization procedure
applies as in standard cases.
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2.1. The spectrum of the spontaneously emitted radiation

We are now in a position to compute the spectrum of the radiation spontaneously emitted by
the particle, due to the interaction with the noise. Let Nkμ(t) := a

†
kμ(t)akμ(t) be the density

of photons of wave vector k and polarization μ. Let |φ〉 := |ψho〉|�〉 be the initial state of the
system, where |ψho〉 is the initial state of the harmonic oscillator and |�〉 is the vacuum state
for the electromagnetic field. Let finally S(k, μ, t) := EP[〈φ|Nkμ(t)|φ〉] be the spectrum of
the emitted radiation, averaged over the noise. By inspecting equations (22) and (23), one
can note that all terms of Nkμ(t) containing either a

†
kμ(0) or akμ(0) give a zero contribution,

when averaged with respect to the vacuum state, while all terms containing w(t) give a zero
contribution, when the stochastic average is taken. Accordingly, S(k, μ, t) is the sum of two
terms:

S(k, μ, t) = Sqm(k, μ, t) + Scol(k, μ, t), (34)

where Sqm(k, μ, t) is the standard quantum formula, while Scol(k, μ, t) is the contribution due
to the noise. We are interested in computing this second term, which reads

Scol(k, μ, t) = λh̄e2

16π3ε0

1

ωk

∫ t

0
dsG−

1 (k, t − s)G+
1(k, t − s). (35)

This is the main formula. In the next section, we will apply it to the two interesting cases of a
free particle (ω0 = 0) and of a bounded particle (ω0 �= 0).

3. The free particle

The free particle evolution can be deduced from the previous formulas by taking the limit
ω0 → 0. However, it turns out to be easier to redo the calculation, starting from equations
(13)–(15) with κ = 0. The final result is

q(t) = q(0) + F̄0(t)p(0) − e

√
h̄

ε0

∑
μ

∫
d3k

g(k)√
2ωk

εkμ

[
Ḡ+

1(k, t) akμ(0) + Ḡ−
1 (k, t) a

†
kμ(0)

]

+
√

λh̄

∫ t

0
dsF̄0(t − s)w(s), (36)

p(t) = p(0) +
√

λh̄

∫ t

0
ds w(s), (37)

a
†
kμ(t) = eiωkta

†
kμ(0) − ie√

h̄ε0

g(k)√
2ωk

Ḡ−
1 (k, t) εkμ · p(0)

+
ie2

ε0

g(k)√
2ωk

εkμ ·
∑
μ′

∫
d3k′ g(k′)√

2ωk′
εk′μ′[Ḡ−

+ (k, k′, t) ak′μ′(0)

+ Ḡ−
−(k, k′, t) a

†
k′μ′(0)] − ie

√
h̄λ

ε0

g(k)√
2ωk

εkμ ·
∫ t

0
ds Ḡ−

1 (k, t − s)w(s), (38)

akμ(t) = e−iωktakμ(0) +
ie√
h̄ε0

g(k)√
2ωk

Ḡ+
1(k, t) εkμ · p(0)

− ie2

ε0

g(k)√
2ωk

εkμ ·
∑
μ′

∫
d3k′ g(k′)√

2ωk′
εk′μ′

[
Ḡ+

+(k, k′, t) ak′μ′(0)

+ Ḡ+
−(k, k′, t) a

†
k′μ′(0)

]
+ ie

√
h̄λ

ε0

g(k)√
2ωk

εkμ ·
∫ t

0
ds Ḡ+

1(k, t − s)w(s), (39)
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with

F̄0(t) = t

m
+

β2

m2
emt/β, (40)

Ḡ±
1 (k, t) = ∓ i

mωκ

∓ i e∓iωκ t

ωκ(m ± iωκ)
+

emt/β

(m/β)[(m/β) ± iωκ ]
, (41)

Ḡ±
±(k, k′, t) = e∓iωκ t

i(∓ωκ ± ωκ ′)(m ± iβωκ)
+

e∓iωκ′ t

i(∓ωκ ′ ± ωκ)(m ± iβωκ ′)

+
emt/β

[(m/β) ± iωκ ][(m/β) ± iωκ ′]
. (42)

In the last expression, the upper ± refers to the sign in front of each ωκ , while the lower ±
refers to the sign in front of each ωκ ′ . Once again, in all the above formulas we have a run-away
behavior, as a consequence of the renormalization procedure. In the subsequent analysis, we
neglect such terms.

There are two quantities which are of particular interest, in order to understand the
behavior of the free charged particle under the influence of the collapsing field: the evolution
of the mean kinetic energy, and the spectrum of the emitted radiation. We shall now discuss
both of them.

3.1. The mean free kinetic energy

The mean kinetic energy of the particle is given by

Emean(t) ≡ 1
2 m E[〈φ|q̇(t)2|φ〉]. (43)

From equations (36) and (40) we have

q̇(t) = p(0)

m
− e

√
h̄

ε0

∑
μ

∫
d3k

g(k)√
2ωk

εkμ

[
e−iωkt

m + iβωk

akμ(0) +
eiωkt

m − iβωk

a
†
kμ(0)

]

+

√
λh̄

m

∫ t

0
ds w(s). (44)

By taking as initial state |φ〉 = |ψfree〉|�〉, as in the previous section, and after differentiating
over time, one obtains the following expression:

d

dt
Emean = 3

2

λh̄2

m
= 3

4

λGRWαGRWh̄2

m
, (45)

which corresponds to the standard GRW formula [1]. We have then a very interesting result:
in spite of the fact that—as we shall see in the next subsection—the particle emits radiation
at a constant rate, its mean kinetic energy increases steadily in time as if the particle were
neutral. In other words, the noise drives enough energy into the particle both to increase its
kinetic energy and to make it radiate. This is a consequence of the fact that the collapse terms
contain only the position operator q, due to which wt acts like an infinite temperature noise;
this feature was first pointed out in [24]. In the same reference, it was shown that a term
proportional to the momentum operator acts like a dissipative term, thanks to which the mean
energy thermalizes to a finite value, associated with a temperature which can be considered
as the temperature of the noise. This is similar to what happens in the theory of quantum
Brownian motion [25–27], and more generally in the theory of open quantum systems, which

9



J. Phys. A: Math. Theor. 42 (2009) 485302 A Bassi and D Dürr

does not come as a surprise, since collapse models and open quantum systems rely on similar
master equations.

The above results can be read in two different ways. On a more conservative level, one
can accept this steady energy increase as a feature of the model, as long as it does not violate
known experimental data. On a more speculative level, it suggests that the coupling between
the noise and the wavefunction should be modified in order for the total energy (energy of
the noise, plus kinetic energy of the particle, plus energy of the emitted radiation) to be
conserved. According to this view, the models so far proposed (GRW, CSL, QMUPL) are
first approximations of more realistic models of spontaneous wavefunction collapse, yet to be
formulated.

3.2. The spectrum of the emitted radiation

By using equation (35), with G±
1 (k, t) given by equation (41), we obtain the following

expression for the time derivative of the emitted spectrum:

d

dt
Scol(k, μ, t) = λh̄e2

16π3ε0

1

ωk

[
2m2 + β2ω2

k

m2ω2
k

(
m2 + β2ω2

k

) +
2β

mω2
k

(
m2 + β2ω2

k

) ωk sin ωkt

− 2

ω3
k

(
m2 + β2ω2

k

) ωk cos ωkt

]
. (46)

Since all observations are made over a period of time [10] much longer than the characteristic
photon’s frequencies, the two oscillating terms in the above expression average to 0. We are
then left with only the first expression within brackets.

The physically interesting quantity is the spontaneous photon-emission rate d�k/dk

per unit photon momentum. This is obtained from dscol(k, μ, t)/dt by summing over the
polarization states and integrating over all directions in the photon’s momentum space. The
final result is

d

dk
�k = λh̄e2

2π2ε0m2c3k
· 2 + (βck/m)2

1 + (βck/m)2
. (47)

It reassembles equation (21) of [9] (and equation (3.14) of [8]), when replacing ε0 → 1/4π

because of the different system of units used, and when taking λ = (m/mN)2λ0 (mN is the
nucleon mass) as assumed in the mass-dependent CSL model [7]. The only difference is the
extra factor [2 + (βck/m)2]/[1 + (βck/m)2], the β dependence in which comes about because
the result of [8, 9] has been carried out only to first perturbative order, while our result is exact
(within the dipole approximation). For an electron, (βck/m)2 � (9.47 × 10−6Ek/keV)2,
where Ek = h̄ck is the energy of a photon of momentum k. Table 1 of [8] reports data from
photons in an energy range between 11 and 501 keV: our calculation shows that, in this range,
the first-order perturbation theory is extremely accurate.

Since equation (47) is valid for finite times, it provides a trustable understanding of the
radiation process within the limits of the dipole approximation, i.e. as long as the particle
does not move too fast, or as long as the photon’s momentum is not too large. By keeping
only the leading terms in the relevant parameters, i.e. by setting β = 0, equation (47) reduces
to twice the large-time, first-order CSL expression of [10] and [11]. However, according
to the argument of section 1, the CSL and QMUPL models should agree for sufficiently
well-localized systems8 (with respect to the scale set by rC � 10−5 cm); the origin of this
discrepancy will be the subject of further exploration.

8 One can argue that the free particle case contradicts this assumption, as the wavefunction of a free particle rapidly
spreads out in space; however, at least for sufficiently short times the approximation is correct.
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As a last comment, we note that equation (47) predicts an infinite amount of energy to
be emitted per unit time, as d�k/dk is of order 1/k for large k. This ultraviolet catastrophe
is a consequence of the dipole approximation. One of the effects of the term eik·x in equation
(9) is to temper the electromagnetic coupling for high frequencies, by replacing eik·x with 1,
this effect is neglected. Accordingly, equation (47) is not trustable anymore in the very large
k limit.

4. The harmonic oscillator

When the particle is bounded by a linear force, the emitted spectrum takes a quite different
expression. By inserting equations (33), and ignoring the term � = 1 which gives a runaway
solution, one finds∫ t

0
G−

1 (k, t − s)G+
1(k, t − s)

=
3∑

�,�′=2

z�z�′

(z� + z�′)(z� − iωk)(z�′ + iωk)

×
[
z − z�

H(z)

]
z=z�

[
z − z�′

H(z)

]
z=z�′

[e(z�+z�′ )t − 1]

− i
3∑

�=2

ωkz�

H(−iωk)(z� − iωk)2

[
z − z�

H(z)

]
z=z�

[e(z�−iωk)t − 1]

+ i
3∑

�=2

ωkz�

H(+iωk)(z� + iωk)2

[
z − z�

H(z)

]
z=z�

[e(z�+iωk)t − 1]

+
ω2

k

H(−iωk)H(+iωk)
t. (48)

The formula is rather cumbersome. However, the terms in the first three lines contain
exponentially decaying terms, which vanish very rapidly with time. For example—with
reference to equation (31)—the decay time is about 2.93 × 10−47 s for an 11 keV photon.
Accordingly, in the large time limit we have for the differential photon emission rate d�k/dk

(where, as in the free particle case, we have differentiated equation (35) over time, summed
over the polarization states and integrated over all directions in the photon’s momentum space)
the following simple large-time expression:

d�k

dk
= λh̄ce2

2π2ε0

k3

m2
(
ω2

0 − c2k2
)2

+ β2c6k6
. (49)

Two comments are at order. The first important thing one notes is that equation (49) does
not reduce to (47) in the free particle limit. The reason for this incongruence can be traced
back to equation (48), according to which the free particle limit (ω0 → 0) and the large time
limit (t → +∞) do not commute, as one can prove by direct calculation. From the physical
point of view, the reason for the discrepancy is that, in the large time limit, the particle has the
chance to move far enough to feel the edges of the harmonic potential, no matter how weak
the potential is. This means that the particle is never really free, even in the limit ω0 → 0.
As a further proof of this statement, one can note that by taking the free particle limit at finite
times, one does indeed recover equation (47). As a second observation, one can see that in
the lowest order in the relevant parameters (β = 0), the emission rate given by equation (49)
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is of order 1/k for ck � ω0. This is reminiscent of the free particle case. However, the exact
expression is of order 1/k3, and the total emission is finite, contrary to what is implied by
the free particle expression. The physical reason is that the binding potential works against
the emission of high-energy photons, as the term eik·x in equation (9), which is neglected
by the dipole approximation, does.

The third relevant observation is that equation (49) shows resonant behavior corresponding
to the natural frequency ω0 of the oscillator. Indeed the peak of the resonance is very high,
due to the fact that β2c6k6 is a very small quantity (compare the small value of β given in
equation (30)) for k = ω0/c, where ω0 is a standard frequency such as that associated with
the hydrogen atom. Indeed such a great resonance is incompatible with experimental data
and, as such, it would disprove this model, for any significant value of the collapse parameter
λ. However, the large value of the peak is an artificial feature of the model. It emerges as a
combination both of the fact that the the energy levels of the harmonic oscillator are equally
spaced, and from the dipole approximation, according to which transitions are allowed only
between two consecutive levels. In other words, what happens here is that the noise excites
the particle to a higher energy level state; in the de-excitation process only photons of energy
h̄ω0 can be emitted. In a more realistic model, also photons with any energy nh̄ω0 should be
emitted, and the spectrum would have a more articulated resonance structure, where the peaks
are less pronounced. An accurate spectrum would then display several resonances.

To conclude, our analysis shows that, in the presence of a discrete spectrum (e.g. the
hydrogen atom), the differential photon emission rate due to the collapse process should show
typical resonant behavior, which has not been depicted by previous analysis. Although it is
reasonable to expect that these resonances are highly suppressed, it is worthwhile analyzing
such behavior for the CSL model, by generalizing the previous results of [10, 11] to the
low-frequency part of the spectrum.

5. Conclusions

We have analyzed the electromagnetic properties of both a free particle and of a particle
bounded by an harmonic potential, within the framework of collapse models. By choosing a
particularly simple, yet physically meaningful, model of spontaneous wavefunction collapse,
and under only the dipole approximation, we have been able to solve the equations of motion
exactly.

In the free particle case, we have found a counterintuitive result: the particle’s kinetic
energy steadily increases in time, and at the same time it spontaneously emits radiation at a
constant rate. Although this is in principle possible, as long as no conflict with experimental
data emerges, such behavior suggests that collapse models should be modified in order to
temper (or eliminate entirely) the evident violation of the energy conservation principle.

We have also found some discrepancies between our formula and those previously derived,
through a perturbative analysis. The origin of these differences is not clear yet, and will be
further studied in the future.

In the case of a particle confined by an harmonic potential, the spectrum is modified and
a peak emerges, in correspondence to the natural frequency of the oscillator. This feature
suggests that also in more realistic situations (e.g. atomic systems) the spectrum should have
a resonant structure, which is worthwhile analyzing.

These results show that further analysis is required in order to better understand the
electromagnetic properties of charged particles in the CSL model. This is important both for
clarifying the theoretical picture offered by collapse models, and also in the light of future
experimental tests.
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Appendix A. Derivation of equation (31)

The zeros of H(z) defined by equation (30) correspond to the solution of the cubic equation:

z3 + a2z
2 + a1z + a0 = 0, a0 = − κ

β
, a1 = 0, a2 = −m

β
. (A.1)

By defining

q = 1
3 a1 − 1

9 a2
2 r = 1

6 (a1a2 − 3a0) − 1
27 a3

2, s1,2 = 3

√
r ±

√
q3 + r2, (A.2)

the three roots can be written as

z1 = (s1 + s2) − 1

3
a2, z2,3 = −1

2
(s1 + s2) − 1

3
a2 ± i

√
3

2
(s1 − s2) . (A.3)

This is the standard Cardan’s method for finding the roots. In our case,

q3 + r2 = 1

4
a2

0

(
1 +

4

27

a3
2

a0

)
= 1

4

κ2

β2

(
1 +

4

27

m2

ω2
0β

2

)
� 1

27

ω2
0m

4

β4
(A.4)

if ω0 � 2m/
√

27β, as we have originally assumed. Then
√

q3 + r2 � ω0m
2/

√
27β2.

Working under the same approximation we have

r ±
√

q3 + r2 � 1

27

m3

β3

(
1 ±

√
27

ω0β

m
+

27

2

ω2
0β

2

m2

)
(A.5)

and

s1,2 = 3

√
r ±

√
q3 + r2 � 1

3

m

β

(
1 ±

√
3

ω0β

m
+

3

2

ω2
0β

2

m2

)
. (A.6)

From the above expression and from equation (A.3), the approximate values of the roots given
in (31) can be immediately derived.
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